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Abstract

An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes

is described. Applications include the small angle scattering, diffraction, and near-edge

spectroscopy of lithium manganese oxide electrodes.
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1 Introduction

On-line monitoring of changes in materials under chemical reactions is usually

performed by using in-situ reaction chambers. In recent years, numerous X-ray in-

situ chambers have been designed for battery research applications. Since some

of the battery electrode materials are very sensitive to corrosion under ambient

atmosphere, this includes in particular the alkaline metal based systems, such as

lithium batteries, the sealing of the cells plays a very important role.

While many different cell designs have been successfully developed and tested for

short term experiments, to the best of our knowledge, no cell has been reported yet

which allows for experiments that extend over several days or even weeks. Charg-

ing and discharging reactions in batteries are pronouncedly limited by diffusion

and may take hours. As the structure of electrodes may be altered by the number of

charge and discharge cycles, experiments often take as long as weeks or months.

When exposed to ambient atmosphere, the lithium most likely reacts with the nitro-

gen in air to lithium nitride or, with according humidity, to lithium hydroxide. Also,

some of the electrolytes used in batteries may form very agressive compounds, for

instance LiPF6, which forms hydrofluoric acid when in contact with ambient hu-

midity.

Those corrosive reactions are immanent to batteries and have to be minimized by

using a proper sealing. Regular battery test cells, which are not used for in-situ
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studies, are usually very massive and satisfy the strict sealing requirements and

allow cycling experiments for several months.

In contrast, in-situ cells need X-ray windows and thus are more sensitive to leakage.

In some of them, leakage problems are overcome by extensive use of sealants, and

those cells are often for the one-time use only.

Here we present a massive and handy re-usable cell with Beryllium X-ray windows

and O-rings for sealing. It allows charging and discharging of the battery assembly

even for several days without noticable traces of corrosion in the electrodes.

The cell design was meant to allow the cell to be employed in the transmission

mode at any hard X-ray source. In particular, the cell was tested at beamline 12-ID

[1] at BESSRC-CAT, Advanced Photon Source, Argonne/IL, and at beamlines 2-1

and 2-3 at Stanford Synchrotron Radiation Laboratory, Menlo Park/CA.

2 Design of the in-situ cell

Figure 1 displays a schematic sketch of the flat and cylindric cell. The main support

of the cell is a stainless steel disk (12 cm diameter) and a disk from polypropylene

(PP, 9 cm diamteter), both of 5 mm thickness. With steel bolts (size M 5), both disks

are pressed together and then may contain the electrode sample, an ion-conducting

separator, the electrolyte and a counter electrode. Sealing of the cell is necessary

to prevent the electrolyte from drying out or to prevent the sample from chemical
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Fig. 1. Cross section overview of in-situ cell. Note that not all of the parts refer to the same
scale.

reactions with the ambient atmosphere.

The interface between steel disk and PP disk can be considered as the sample com-

partment, which is sealed by three concentric BUNA O-rings which have different

diameters. According groves are provided in both disks.

Figure 2 displays a magnification of the cell part that contains the electrode assem-

bly. Both disks have a hole of 1 mm × 2.5 mm in their center to allow the X-ray

beam to pass through the cell. The holes on either side of the cell are capped with

a Beryllium disk of 380 micrometer thickness. The contact between the Beryllium

disks and the steel disk and the PP disk, respectively, is also sealed with three small
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Fig. 2. Magnified cross section of the central cell parts.

concentric BUNA O-rings. On either side, an aluminium disk with 30 mm diame-

ter serves to fix and press the Beryllium disks on either cell plate. In their center,

the aluminium disks have an opening with 7 mm diameter to allow for the X-ray

beam to pass through. The thickness of disks and the width of holes determines

Fig. 3. Photograph of the in-situ cell, showing PP disk on top of stainless steel disk. The
ruler shows length scale in inches.

the aspect ratio which is necessary to cover a desired Q-range for wide-angle X-

ray diffraction. In the present case, a maximum 2 Θ-angle of about 45 ◦ was given
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which allowed to resolve the [111] Bragg reflex of LiMn2O4 at X-ray energies of

around 6500 eV. Of course, by choosing higher energies, the entire diffractogram

becomes compressed and will be resolved in the 2 Θ-angle of about 45 ◦, however,

on the cost of spatial resolution.

The Be foils are coated with 25 micron thick sticky Kapton tape to prevent contact

with the corrosive electrolyte.

The working electrode is in direct contact with the stainless steel plate which allows

for direct electric contacting. The PP plate has two feed-throughs with stainless

steel bolts which serve as contacts to the lithium counter electrode and an optional

reference electrode. Each of the two steel bolts is sealed with a tiny O-ring of 2 mm

diameter; these inlets are the weakest cell parts in terms of contamination from

ambient atmosphere. After several days of operation, that side of the lithium foil

which is next to the steel bolts, exhibits traces of typical black lithium nitride -

an indication that nitrogen has diffused around the O-ring. Since this effect was

confined to an uncritical area in the cell, we did not attempt to improve the sealing.

Figure 3 shows the assembled cell with the PP plate on top of the stainless steel

plate. Two metal strips are contacted with the bolts in the feed-through for refer-

ence and counter electrodes. Numerous drilled holes in the metal plate allow for a

versatile mounting of the cell at the beamlines.

At SSRL and at APS, we assembled and sealed the cell in a portable helium filled

glove bag on site in their chemistry labs. Also, during one beam time, we assembled
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the cell in our home lab at LBNL and brought it to SSRL for experiments.

To enhance the sealing safety of the cell during experiments, we wrapped it in a

conventional ziplock bag, filled with helium. It turned out, however, that the cell

will remain fine without significant contamination or corrosion for more than four

days without keeping it in helium.

3 First experimental results

First experimental results were obtained with a lithium battery in the cell. Lithium

manganese oxide, cast as a porous electrode (40 micron thickness) on thin alu-

minium foil (25 micron), with a polymer separator, electrolyte, and with lithium

foil (125 micron) as counter electrode, was assembled to a battery cell [1].

X-ray absorption near edge spectra were obtained at SSRL, BL 2-1, during deep

discharge of the battery cell, where the manganese is being reduced from an av-

erage manganese oxidation state of 3.5 towards 2.0 by inserting lithium into the

spinel host lattice. This is shown for 3 different states of charge in Figure 4. At the

same beamline, X-ray diffactograms were recorded during the discharging. Figure

5 displays the [111] Bragg reflex of the Li1+xMn2O4 spinel lattice for two different

X-ray energies at Q-values of about 1.85 and 1.9 Å−1, respectively. After discharg-

ing, this reflects split up into two peaks at Q-values of about 1.37 and 1.39 Å−1.

This cubic → tetragonal phase transition is known as the Verwey transition and

caused by the Jahn-Teller effect. The shift of the [111] peak with drawn line (6500
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Fig. 4. XANES spectra of Li1+xMn2O4 for three different oxidation stages of Mn.
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Fig. 5. [111] Bragg reflex in the uncharged (single peak) and deeply discharged (splitted
peak) state for energies at 6543 eV (solid) and 6500 eV (dotted).

eV photon energy) towards lower Q and its lower intensity is not due to anomalous

scattering of manganese atoms, but due to different ststes of charge in the electrode.
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EXAFS spectra were recorded at beamline 2.3 at SSRL. The evolution of their

according Fourier amplitude during the entire discharge process is displayed in

Figure 6. While the Mn-O distance remains constant during lithiation (R = 1.9 Å),

the Mn-Mn distance (R = 2.8 Å) experiences a split (R = 2.65 Å and R = 3.1 Å)

similar to the split observed in XRD.
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Fig. 6. Evolution of EXAFS fourier magnitude for Mn during discharging from average
Mn valence 3.5 to 3.

Anomalous small angle X-ray scattering (ASAXS) was carried out at the Advanced

Photon Source (APS, BESSRC-CAT) for a period of 40 hours, during which the

battery was gently charged. Scattering curves were recorded at 20 different X-ray

energies around 6530 eV near the manganese (Mn) K-shell absorption edge to al-

low for contrast variation due to anomalous scattering of the Mn. Results are shown

in Figure 7.
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Fig. 7. Scattering curves of manganese oxide in electrode matrix for three different states
of charge.
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